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Abstract—Few-shot class-incremental learning (FSCIL) aims to
continually learn new classes using a few samples while not for-
getting the old classes. The key of this task is effective knowledge
transfer from the base session to the incremental sessions. Despite
the advance of existing FSCIL methods, the proposed knowledge
transfer learning schemes are sub-optimal due to the insufficient
optimization for the model’s plasticity. To address this issue, we
propose a Random Episode Sampling and Augmentation (RESA)
strategy that relies on diverse pseudo incremental tasks as agents
to achieve the knowledge transfer. Concretely, RESA mimics the
real incremental setting and constructs pseudo incremental tasks
globally and locally, where the global pseudo incremental tasks
are designed to coincide with the learning objective of FSCIL and
the local pseudo incremental tasks are designed to improve the
model’s plasticity, respectively. Furthermore, to make convincing
incremental predictions, we introduce a complementary model
with a squared Euclidean-distance classifier as the auxiliary
module, which couples with the widely used cosine classifier
to form our whole architecture. By such a way, equipped with
model decoupling strategy, we can maintain the model’s stability
while enhancing the model’s plasticity. Extensive quantitative
and qualitative experiments on three popular FSCIL benchmark
datasets demonstrate that our proposed method, named Knowl-
edge Transfer-driven Relation Complementation Network (KT-
RCNet), outperforms almost all prior methods. More precisely,
the average accuracy of our proposed KT-RCNet outperforms the
second-best method by a margin of 5.26%, 3.49%, and 2.25% on
miniImageNet, CIFAR100, and CUB200, respectively. Our code
is available at https://github.com/YeZiLaiXi/KT-RCNet.git.

Index Terms—lifelong learning, class-incremental learning,
few-shot class-incremental learning, image recognition.

I. INTRODUCTION

ALthough Deep Neural Networks have achieved great
success in many vision tasks [1], [2], [3], these methods

can only process predefined classes. In many real image
recognition scenarios, the number of classes that needs to
be processed usually grows continually. The conventional
solution referred to as joint training is to use the data of old and
new classes to train the model. Obviously, this strategy costs
substantial time and effort to train the model in each learning
phase. In response to this weakness, class-incremental learning
(CIL) is proposed [4], aiming to learn new classes fast while
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Fig. 1. The learning objective of FSCIL is to learn a classifier initialized by
prototypes to classify the test sets of all encountered classes. Our proposed
method mimics the real incremental setting and constructs pseudo incremental
tasks from the global and local perspectives to coincide with the learning
objective of FSCIL and improve the model’s plasticity.

not forgetting the old classes. Despite the advance of current
CIL methods [5], [6], the key factor behinds the success is the
large amount of annotated training samples for new classes.
However, annotating a large number of training samples still
costs time and effort, and the number of training samples
in some scenarios, such as identifying rare bird species, is
scarce, which often makes these methods fail due to the over-
fitting problem. In response to such challenging incremental
scenarios, few-shot class-incremental learning (FSCIL) [7] is
proposed to learn new classes using a few samples while
keeping the performance on the old classes.

FSCIL inherits the characteristics of CIL and few-shot
learning (FSL): several learning sessions come in sequence
like the common CIL, but the samples in each new class
are limited, as FSL assumes. The first session, dubbed the
base session, provides sufficient training samples for model
learning. In contrast, the following sessions, called incremen-
tal sessions, only possess limited training samples. In each
session, the model is trained only with the current session’s
data but evaluated on the test sets of all encountered classes.
The scarcity of new training samples will seriously destroy the
model’s stability and plasticity.

To mitigate these problems, researchers propose to the
model decoupling strategy that freezes the encoder in incre-
mental sessions to maintain the model’s stability [8], [9], [10].
However, this strategy also results in the model relying heavily

ar
X

iv
:2

30
6.

10
94

2v
1 

 [
cs

.C
V

] 
 1

9 
Ju

n 
20

23

https://github.com/YeZiLaiXi/KT-RCNet.git 


JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

on the knowledge learned in the base session for recognizing
the incremental classes. To improve the model’s plasticity,
previous methods construct various pseudo incremental tasks
with the data sampled from the base session aiming to transfer
the knowledge learned from the base session to the incremental
sessions. Despite the advance of these methods, the con-
structed pseudo incremental tasks are either local classification
tasks that do not align with the learning objective of FSCIL [9],
[11], or global classification tasks that have limited effect on
improving the model’s plasticity [8]. Specifically, the local
classification task only includes pseudo new classes, while
FSCIL aims to learn a global classifier capable of classifying
both old and new classes. This inconsistency between the
local classification task and the learning objective of FSCIL
inevitably affects the model’s performance. On the other hand,
the global classification task, which consists of pseudo old and
new classes, matches the learning objective of FSCIL but only
consists of data sampled from the base session, thereby com-
promising its effectiveness in enhancing the model’s plasticity.
By borrowing the treasure from the few-shot learning [12], one
straightforward approach is to utilize the pseudo new classes to
construct few-shot-based local classification tasks to enhance
the model’s plasticity. However, a delicately pretrained model
can classify these pseudo new classes well, the contribution
of these local classification tasks is compromised. Based
on above considerations, we propose a knowledge transfer
learning scheme called Random Episode Sampling and Aug-
mentation (RESA). Our proposed RESA scheme focuses on
constructing pseudo incremental tasks specifically designed
to improve the model’s plasticity. As illustrated in Figure 1,
each pseudo incremental task consists of three components:
the pseudo old prototypes, the pseudo incremental data, and
the synthesized incremental data. By combining the pseudo
old prototypes and the pseudo incremental data, we create
a series of global pseudo incremental tasks to optimize the
model, ensuring that the learning objective is consistent with
that of FSCIL. We further enhance the diversity of pseudo new
classes by introducing the synthesized incremental data. This
allows us to construct more effective local pseudo incremental
tasks by combining the pseudo incremental data with the syn-
thesized incremental data, resulting in further improvements
to the model’s plasticity.

Furthermore, on the design of robust metric criteria, re-
searchers pay little attention to this study, and the problem
is rarely explored. Previous methods [8], [9], [10], [11], [13]
mainly rely on a single metric to estimate the relation between
prototypes and test features. We think such a mechanism is
unilateral. The reason mainly stems from the poor representa-
tion of the new classes, with the unreliable representation, the
model is easy to give improper relation prediction. Intuitively,
with only one metric, no mechanism to calibrate it if the
captured relation is inappropriate. To remedy this issue, we
further augment our system with dual-metric learning, whose
target is to jointly estimate the relevance of the prototype and
the test features. To be specific, we introduce a complementary
model with a squared Euclidean-distance classifier as the
auxiliary module, which couples with the widely used cosine
classifier to form our full architecture referred to as Knowl-

edge Transfer-driven Relation Complementation Network (KT-
RCNet). Two classifiers provide dual metrics to give a more
convincing relation estimation.

Our main contributions in this paper are summarized as
follows:
• A knowledge transfer learning scheme, RESA, is spe-

cially designed for FSCIL, in which we construct pseudo
incremental tasks from global and local perspectives to
help the model transfer the knowledge learned from the
base session to incremental sessions.

• A relation complementation strategy is proposed,
which ensembles different metrics to investigate the com-
prehensive relation of prototypes and test features.

• Competitive performance. Extensive experiments on
miniImageNet, CIFAR100, and CUB200 datasets demon-
strate the superiority of our proposed method over previ-
ous methods.

II. RELATED WORK

A. Few-Shot Learning

Few-shot learning (FSL) aims to develop machine learning
algorithms capable of processing new classes using only a
few samples. Scarce training samples provide limited prior
knowledge, making it challenging for the model to recognize
new classes. To address this issue, the learning paradigm in
FSL is often organized as meta-tasks similar to the infer-
ence task. Based on this learning paradigm, many interesting
works are proposed, which can be categorized into metric-
based, optimization-based, and hallucination-based methods.
The metric-based methods[14], [15], [16] leverage different
metrics or networks, such as Euclidean or Graph Neural
Networks(GNNs), to construct the nearest neighbor classifier
to measure the similarity between the support and query
samples. The optimization-based methods[17], [18], [19], [20]
design different meta-learners or optimization strategies to
learn to adapt to different query set with the support set,
For example, Finn et al. [17] propose a classical and famous
method named MAML, consisting of a meta-learner using
the support set and a fixed learning rate to conduct model
fast adaption. Rusu et al. [18] decouple the gradient-based
adaptation procedure from the underlying high-dimensional
space of model parameters to a low-dimensional space to make
the model generalize to new tasks easier. Baik et al. [19]
propose task-and-layer-wise attenuation on the compromised
initialization to reduce the adverse effects of forcibly sharing
the initialization in MAML. The hallucination-based methods
focus on learning a generation model or module to generate
classification weights [21] or fake samples [22], [23]. For
example, Dong et al. [21] propose a method that utilizes
the attention mechanism and fuses the information provided
by both support and query set to generate the classification
weights to classify query samples. Xu et al. [23] propose a
method that uses the conditional variational autoencoder to
generate more representative features, while Dong et al. [22]
propose to generate the adversarial images to improve the
representation ability of the model. Though this research field
is similar to FSCIL, most FSL methods do not consider the
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performance on old classes, while FSCIL aims to achieve good
performance on both old and new classes.

B. Class-Incremental Learning

Class-incremental learning (CIL) aims to enable continu-
ous learning of new classes while retaining knowledge of
previously learned classes. However, due to the limitation of
using old data, the model’s parameters are overwritten by
the data of new classes in incremental sessions, leading to
the notorious catastrophic forgetting problem. To address this
issue, current CIL methods can be roughly categorized into
four groups: regularization-based, rehearsal-based, isolation-
based, and rehearsal-free approaches. The regularization-based
methods[4], [24], [25] distill the knowledge from previous
tasks when training the new task to prevent the model from
forgetting old, such as Li et al. [4] propose to distill the
outputs of classification model while Douillard et al. [24]
distill the features of each stage in the feature extraction
process. The rehearsal-based methods [26], [27], [6] adopt
different strategies, such as reservoir sampling [28], to restore
samples of the previous task and then use them either as inputs
or constrain to alleviate catastrophic forgetting when train the
new task. To store more old samples with limited memory,
Wang et al. [6] propose to reduce the image’s quality. The
isolation-based methods [29], [30] introduce extra parameters
for each new task, such as Yan et al. [29] train new feature
encoder for each new task. With the emerging of foundation
models[31], [32], the rehearsal-free methods design various
prompt-based strategies to learn corresponding knowledge for
different incremental tasks [33], [34]. Despite the advance of
current CIL methods, these methods often assume there are
sufficient training samples for new class learning, which are
not suitable for some incremental scenarios where training
samples for new classes are limited.

C. Few-Shot Class-Incremental Learning

FSCIL aims to learn a global classifier in phases, where the
number of training samples provided for new class learning is
scarce. Due to this task’s challenging and practical character,
it has attracted the attention of many scholars in recent years.
To maintain the model’s stability, the knowledge distillation
strategy is adopted by most FSCIL methods [35], [36], [37].
For example, Dong et al. [35] propose to distill the relation be-
tween different classes to balance the tasks of old-knowledge
preserving and new-knowledge adaptation. Cheraghian et al.
[36] propose a semantic guide method that distills the semantic
information which is aligned by an attention module to prevent
catastrophic forgetting. In contrast to knowledge distillation-
based methods, many methods propose to freeze the encoder
in the incremental sessions and demonstrate the effectiveness
of such a strategy [38], [9], [10]. However, this strategy also
constrain the model’s plasticity. To solve this issue, mimicking
the incremental setting to construct pseudo incremental tasks
becomes an emerging and effective solution. For example, Zhu
et al. [8] propose a strategy named Random Episode Selection
Strategy (RESS) that samples part of old data as pseudo new
data and the prototypes of other old classes as the pseudo old

prototypes to construct pseudo incremental tasks. Zhang et al.
[9] propose a Pseudo Incremental Learning (PIL) strategy that
construct the pseudo incremental tasks by sampling part of
old data as pseudo old data and rotating the sampled data
to synthesize pseudo new data. Chi et al. [11] propose a
meta-learning strategy that mimics the multi-step incremental
setting and constructs sequential pseudo incremental tasks to
make the model learn to optimize itself using a few training
samples. The essential mechanism of RESS is to construct the
global pseudo incremental tasks to optimize the model’s global
relation prediction ability. However, the effectiveness of this
strategy is limited due to the fact that a pretrained model can
already classify old classes well. The essential mechanism of
strategies proposed by Zhang et al. [9] and Chi et al. [11]
is to construct local pseudo incremental tasks to optimize the
model’s plasticity. However, these strategies are inconsistent
with learning objective of FSCIL which compromises the
model’s global relation prediction ability. Recently, consider-
ing that single model mainly focuses on one-side knowledge
which limits the ability of resisting catastrophic forgetting, Ji
et al. [39] propose to ensemble different model to capture
diverse knowledge to mitigate such limitation, where a CNN
architecture is introduced to capture global knowledge and a
Transformer architecture is introduced to capture local knowl-
edge. Different from previous methods, our proposed strategy
constructs the pseudo incremental tasks globally and locally,
and ensemble different metrics to give convincing incremental
relation estimations rather than different architectures.

III. PRELIMINARY KNOWLEDGE

Before delving into the details of our methodology, we first
introduce the problem definition of few-shot class-incremental
learning (FSCIL). FSCIL aims to learn a global classifier
in phases to classify all encountered classes and proposes
an incremental setting as follow. It’s worth noting that each
learning phase is also called the session in FSCIL. Formally,
let D0 → D1 → ... denote the data stream. The classes
contained in different sessions satisfy C𝑖 ∩ C 𝑗 = ∅(𝑖 ≠ 𝑗).
Each D𝑖 consists of a training set D𝑖

𝑡𝑟𝑎𝑖𝑛
and a test set D𝑖𝑡𝑒𝑠𝑡 ,

where only D0
𝑡𝑟𝑎𝑖𝑛

contains lots of samples, D𝑖
𝑡𝑟𝑎𝑖𝑛
(𝑖 > 0)

contains a few samples, such as 5 training samples for each
class. In session 𝑖, only D𝑖

𝑡𝑟𝑎𝑖𝑛
is available. In contrast,{

D0
𝑡𝑒𝑠𝑡 , ...,D𝑖𝑡𝑒𝑠𝑡

}
are used to evaluate the model’s perfor-

mance. Under the background of model decoupling strategy,
the essential problem that needs to be solved in FSCIL is an
incremental relation measuring problem between the classifier
weights initialized by prototypes of training data and the
test features. However, scarce training samples make such a
problem challenging in incremental sessions.

IV. METHOD

In this section, we first describe the overall framework in
Section IV-A. Then, we describe the conventional training
paradigm in SectionIV-B. Next, we detail how to apply the
random episode sampling and augmentation (RESA) strategy
to constructed pseudo incremental tasks to optimize the model
in Section IV-C and IV-D, respectively. Finally, we detail the
inference in Section IV-E.
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Fig. 2. The overview of our proposed knowledge transfer learning scheme, where (a) the random episode sampling and augmentation strategy.

A. Framework Overview

Our proposed method consists of a base model with the
cosine classifier as previous FSCIL methods [8], [9], [40]
and a complementary model with the squared Euclidean-based
classifier. We first adopt the conventional training paradigm
to learn the parameters of the base model. Then, as shown in
Figure 2, we utilize the RESA to construct pseudo incremental
tasks to learn the parameters of the complementary model.
In the end, we use prototypes to initialize or expand the
classifiers of the base model and the complementary model
to prepare for future incremental relation measuring. For the
sake of following description, we refer the following feature
encoding of the base model and the complementary model as
𝑓1 (𝑥) = N(𝑥; 𝜃1) and 𝑓2 (𝑥) = N(𝑥; 𝜃2), where 𝜃1 and 𝜃2 refer
to the parameter of the base model’s and the complementary
model’s encoder.

B. Conventional training paradigm

Sufficient training samples in the base session enable us
to train a satisfactory classification model to classify base
classes. However, if simply employing a linear layer as the
classification layer, this will results the imbalance magnitude
between base and future coming incremental classes [41],
[9], compromising the model’s performance. Therefore, we
replace the linear classification layer with the cosine classifier.
Concretely, let 𝑥 denote the image data. We first input the 𝑥
to the base model and compute the classification score 𝑃 as
follow:

𝑃 = softmax(𝑠Φ1 ( 𝑓1 (𝑥),𝑊1)), (1)

where 𝑠 is the scale factor, Φ1 (𝑎, 𝑏) = 𝑎·𝑏
| |𝑎 | |2 | |𝑏 | |2 is the cosine

classifier, · refers to the inner product, and 𝑊1 refers to the

classifier weights. After obtained the classification score 𝑃,
the parameters 𝜃1 and 𝑊1 is optimized by

𝜃∗1,𝑊
∗
1 = arg min

𝜃1 ,𝑊1

L𝑐𝑒 (𝑃, 𝑦), (2)

where L𝑐𝑒 refers to the cross-entropy loss function, 𝑦 is the
ground truth of 𝑥.

C. Random Episode Sampling and Augmentation

In FSCIL, the scarce training samples in the incremental
sessions make it is difficult to further train the model, resulting
in a common problem, i.e. , the representations for new classes
are weak. Due to the weak representations for new classes, the
model is easy to give improper relation prediction. For this
problem, our solution is to use a complementary model with
different metric from the base model and ensemble different
metrics to mitigate this problem. To learn the parameters of
the complementary model, a straightforward method is to
train it in the conventional manner. However, the data forms
in the incremental sessions are few-shot based, the task gap
between the base session and the incremental sessions makes
such a strategy sub-optimal. To well transfer the knowledge
learned from the base session to the incremental sessions,
RESA mimics the real incremental setting to construct a
series of pseudo incremental tasks from global and local
perspectives for each episode with the data sampled from
the base session, where the global pseudo incremental task is
used to coincide with the learning objective of FSCIL, and the
local pseudo incremental task is used to improve the model’s
plasticity. To construct these tasks, there are four main steps,
weight computing, data sampling, weight sampling, and data
augmentation.
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•Weight computing. To prepare for later weight sampling,
with 𝐷0

𝑡𝑟𝑎𝑖𝑛
, RESA first get the classifier weights 𝑊1 of the

base model by

𝑊1 = mean( 𝑓1 (𝑥)) ∈ R𝑁×𝑑 , (3)

where 𝑁 refers to the number of base classes, and 𝑑 refers
to the dimension of data embedding. Next, RESA applies
the complementary model to encode 𝐷0

𝑡𝑟𝑎𝑖𝑛
. In the end,

the classifier weights 𝑊2 of the complementary model are
computed by

𝑊2 = mean( 𝑓2 (𝑥)) ∈ R𝑁×𝑑 , (4)

where 𝑓2 (𝑥) denotes the data embedding of 𝐷0
𝑡𝑟𝑎𝑖𝑛

encoded
by the complementary model.

• Data sampling. To mimic the data setting of new coming
classes in the incremental session, RESA first randomly selects
several classes from C0 as the pseudo incremental classes.
Then, RESA randomly samples a few data for each selected
class to constitute the support set 𝑆 and query set 𝑄, where
𝑆, 𝑄 will serve as the training, test set of real incremental
classes, respectively.

• Prototype sampling. To mimic the data setting of old
classes in the incremental session, except the classifier weights
of pseudo incremental classes, other classifier weights of 𝑊1
and 𝑊2 are selected as the pseudo old classifier weights
𝑊
𝑝𝑜

1 and 𝑊 𝑝𝑜

2 of the base model and complementary model,
respectively.

• Data augmentation. To improve the model’s plasticity,
RESA performs data augmentation to synthesize pseudo incre-
mental data to enhance the diversity of pseudo new classes.
Concretely, RESA rotates the 𝑆 and 𝑄 to construct the support
set 𝑆𝑎 and query set 𝑄𝑎 of new pseudo incremental classes.

Overall, the combination of
{
𝑆, 𝑄, 𝑆𝑎, 𝑄𝑎,𝑊

𝑝𝑜

1 ,𝑊
𝑝𝑜

2
}

forms a pseudo incremental task, where the combination of{
𝑆, 𝑄,𝑊

𝑝𝑜

1 ,𝑊
𝑝𝑜

2
}

forms the global pseudo incremental task,
and the combination of {𝑆, 𝑄, 𝑆𝑎, 𝑄𝑎} forms the local pseudo
incremental task.

D. Complementary Learning

With the constructed pseudo incremental tasks, the com-
plementary learning aims to optimize the complementary
model for relation calibration. The pseudo code of this stage
is illustrated in Alg.1. With the constructed global pseudo
incremental task

{
𝑆, 𝑄,𝑊

𝑝𝑜

1 ,𝑊
𝑝𝑜

2
}
, we first encode the data

of 𝑆 and 𝑄 using 𝑓 (; 𝜃1) and 𝑓 (; 𝜃2). The corresponding
data embeddings are denoted as 𝑓 𝑠1 (𝑥), 𝑓

𝑞

1 (𝑥), 𝑓 𝑠2 (𝑥), and
𝑓
𝑞

2 (𝑥), respectively. Then, the pseudo new classifier weights
𝑊
𝑝𝑛

1 of the base model are computed using Eq.3 and 𝑓 𝑠1 (𝑥).
Analogously, the pseudo new classifier weights 𝑊 𝑝𝑛

2 of the
complementary model are computed using Eq.4 and 𝑓 𝑠2 (𝑥).
Next, 𝑊 𝑝𝑛

1 and 𝑊
𝑝𝑜

1 are concatenated as the pseudo global
classifier weights 𝑊 𝑝𝑔

1 of the base model, while 𝑊
𝑝𝑛

2 and
𝑊
𝑝𝑜

2 are concatenated as the pseudo global classifier weights
𝑊
𝑝𝑔

2 of the complementary model. Given the pseudo global

Algorithm 1 Complementary learning.
Require: The base model 𝑓 (; 𝜃1), the complementary

model 𝑓 (; 𝜃2), global pseudo incremental task{
𝑆, 𝑄, 𝑆𝑎, 𝑄𝑎,𝑊

𝑝𝑜

1 ,𝑊
𝑝𝑜

2
}
, local pseudo incremental

task {𝑆, 𝑄, 𝑆𝑎, 𝑄𝑎}.
Ensure: A trained 𝑓 (; 𝜃2).

1: while not done do
2: 𝑊

𝑝𝑛

1 ,𝑊
𝑝𝑛

2 ← Get the base model’s and complementary
model’s pseudo new classifier weights using 𝑆, Eq. 3
and Eq. 4, respectively.

3: 𝑊
𝑝𝑔

1 ← Get the base model’s pseudo global classifier
weights by concatenating 𝑊 𝑝𝑛

1 and 𝑊 𝑝𝑜

1
4: 𝑊

𝑝𝑔

2 ← Get the complementary model’s pseudo global
classifier weights by concatenating 𝑊 𝑝𝑛

2 and 𝑊 𝑝𝑜

2
5: 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 ← Make predictions for 𝑄 using 𝑊

𝑝𝑔

1 ,𝑊
𝑝𝑔

2 ,
Eq. 5, 6 and 7

6: L𝑔𝑙𝑜𝑏𝑎𝑙 ← Compute the global loss by using Eq.8
7: 𝑊 𝑠𝑎

2 ← Get the synthesized pseudo new classifier
weights using 𝑆𝑎 and Eq. 4

8: 𝑊 𝑙
2 ← Get the local classifier weights by concatenating

𝑊
𝑝𝑛

2 and 𝑊 𝑠𝑎
2

9: 𝑃𝑙𝑜𝑐𝑎𝑙 ← Make predictions for {𝑄,𝑄𝑎} using 𝑊 𝑙
2, Eq.

6 and softmax function with a scale factor
10: L𝑙𝑜𝑐𝑎𝑙 ← Compute the local loss using 𝑃𝑙𝑜𝑐𝑎𝑙 and Eq.

10
11: L ← Compute the total loss using Eq.11
12: Optimize the complementary model with SGD
13: end while

classifier weights 𝑊 𝑝𝑔

1 and 𝑊 𝑝𝑔

2 , the respective relations can
be calculated accordingly:

𝑟1 = Φ1 ( 𝑓 𝑞1 (𝑥),𝑊
𝑝𝑔

1 ), (5)
𝑟2 = Φ2 ( 𝑓 𝑞2 (𝑥),𝑊

𝑝𝑔

2 ), (6)

where 𝑟1, 𝑟2 are the relation estimations given by the base
model and complementary model,respectively, Φ2 (𝑎, 𝑏) =

−||𝑎 − 𝑏 | |2/𝑑 refers to the squared Euclidean distance-based
classifier. With 𝑟1 and 𝑟2, the final incremental relation measur-
ing 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 is given by integrating the above two predictions:

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = softmax(𝑠( 𝑟1
𝑑
+ 𝑟2)), (7)

where 𝑑 is used to eliminate the impact of dimension. Finally,
the global loss L𝑔𝑙𝑜𝑏𝑎𝑙 is computed by the cross entropy (CE)
loss:

L𝑔𝑙𝑜𝑏𝑎𝑙 = L𝐶𝐸 (𝑃𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑌𝑔𝑙𝑜𝑏𝑎𝑙), (8)

where 𝑌𝑔𝑙𝑜𝑏𝑎𝑙 refers to the ground truth of the query data
contained in the global pseudo incremental task.

With the constructed local pseudo incremental task
{𝑆, 𝑄, 𝑆𝑎, 𝑄𝑎}, We first encode the data of 𝑆𝑎 and 𝑄𝑎 using
the 𝑓 (; 𝜃2). The corresponding data embeddings of 𝑆𝑎 and
𝑄𝑎 are denoted as 𝑓 𝑠𝑎2 (𝑥) and 𝑓

𝑞𝑎

2 (𝑥), respectively. Then,
we use Eq. 4 to compute the mean features 𝑊 𝑠𝑎

2 of 𝑓 𝑠𝑎2 (𝑥).
Next, we concatenate 𝑊 𝑠𝑎

2 and 𝑊
𝑝𝑛

2 as the local classifier
weights 𝑊 𝑙

2 to classify 𝑓
𝑞𝑎

2 (𝑥) and 𝑓
𝑞

2 (𝑥) using Eq. 6. Let
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TABLE I
COMPARISON WITH OTHER METHODS ON miniIMAGENET, WHERE * REPRESENTS THE RESULTS COPIED FROM [7].

Method sessions
Avg. Diff.

0 1 2 3 4 5 6 7 8

Joint-CNN 81.20 75.62 70.66 65.81 62.20 58.41 55.78 53.16 50.00 63.65 0.00
NCM∗ [42] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 30.83 -35.83
iCaRL∗ [26] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 33.29 -32.79
EEIL∗ [43] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 34.97 -30.42
TOPIC[7] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 -25.58
SPPR[8] 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92 52.76 -8.08
CEC[9] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 -2.37
F2M[38] 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 57.89 -2.16
MCNet[39] 72.33 67.70 63.50 60.34 57.59 54.70 52.13 50.41 49.08 58.64 -0.92
MetaFSCIL[11] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 -0.81
FACT[13] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 60.70 +0.49
C-FSCIL[10] 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41 61.61 +1.41
SoftNet[40] 79.77 75.08 70.59 66.93 64.00 61.00 57.81 55.81 54.68 65.07 +4.68
KT-RCNet(Ours) 84.62 79.94 75.70 72.21 69.38 66.26 63.48 61.39 60.02 70.33 +10.02

the computed relation be 𝑟𝑙𝑜𝑐𝑎𝑙 , the local relation estimation
𝑃𝑙𝑜𝑐𝑎𝑙 is predicted

𝑃𝑙𝑜𝑐𝑎𝑙 = softmax(𝑠𝑟𝑙𝑜𝑐𝑎𝑙). (9)

Consequently, the local loss is defined as:

L𝑙𝑜𝑐𝑎𝑙 = L𝐶𝐸 (𝑃𝑙𝑜𝑐𝑎𝑙 , 𝑌𝑙𝑜𝑐𝑎𝑙), (10)

where 𝑌𝑙𝑜𝑐𝑎𝑙 refers to the ground truth of the query data
contained in the local pseudo incremental task.

To coincide with the learning objective of FSCIL and
improve the model’s new class adaption ability, we define the
total objective as:

L = 𝜆1L𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜆2L𝑙𝑜𝑐𝑎𝑙 , (11)

where 𝜆1 and 𝜆2 are hyper-parameters to balance the two
losses.

E. Incremental Relation Measuring

In incremental sessions, the training set of current incremen-
tal sessions is first used to expand the previous classifiers. For
example, let 𝑊𝑜

1 and 𝑊𝑜
2 denote the old classifier weights of

the base model and complementary model. In each incremental
session, we first get the data embedding of the available
training set by inputting the training set to the base model
and complementary model, respectively. Then, we use Eq. 3
and Eq. 4 to compute the classifier weights 𝑊𝑛

1 and 𝑊𝑛
2 of

new classes, respectively. Next, we use the concatenation of
𝑊𝑜

1 and 𝑊𝑛
1 to expand the old classifier of the base model.

The update classifier weights we denote as 𝑊𝑔

1 . Similarly,
the old classifier weights 𝑊𝑜

2 of the complementary model
is expanded by the concatenation of 𝑊𝑜

2 and 𝑊𝑛
2 . The update

classifier weights of the complementary model we denote as
𝑊
𝑔

2 . Given a test sample 𝑥 from the test set of all encountered
classes, the incremental relation estimation 𝑃 is given by

𝑃 = Φ1 ( 𝑓1 (𝑥),𝑊𝑔

1 ) +Φ2 ( 𝑓2 (𝑥),𝑊𝑔

2 ). (12)

V. EXPERIMENTS

A. Datasets

miniImageNet. miniImageNet is the subset of ImageNet [44]
dataset, which comprises 100 classes. Each class consists
of 500 training images and 100 test images. Following the
approach proposed in [7], we split this dataset into 60 base
classes and 40 incremental classes. The 40 incremental classes
are further divided equally into 8 incremental sessions, where
each incremental session takes the setting of 5-way-5-shot.
This indicates that each session consists of 5 classes, and each
class has five training images.

CIFAR100. CIFAR100 [45] consists of 60,000 RGB images
from 100 classes, where each class consists of 500 training
images and 100 test images. Following [7], we split this
dataset into 60 base classes and 40 incremental classes. The
40 incremental classes are further equally divided into 8
incremental sessions, where each session takes the setting of
5-way-5-shot.

Caltech-UCSD Birds-200-2011. CUB200 [46] is a fine-
grained dataset that contains 11,788 RGB images from 200
classes, where each class consists of approximately 30 training
images and 30 test images. Following [7], we split this dataset
into 100 base classes and 100 incremental classes. The 100
incremental classes are equally divided into 10 incremental
sessions, where each session takes the setting of 10-way-5-
shot.

B. Implementation Details

Our implementation is based on the PyTorch [47] platform.
Like [8], [38], we adopt ResNet18 as the backbone for all
benchmark datasets.
• In the pretraining stage, the base model is trained for 50

epochs with a batch size of 128 on CUB200 using the SGD
optimizer with a learning rate of 0.03, weight decay of 0.0001
and momentum of 0.9. The learning rate is decreased by a
factor of 0.1 per 10 epochs. For miniImageNet and CIFAR100,
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TABLE II
COMPARISON WITH OTHER METHODS ON CIFAR100, WHERE * REPRESENTS THE RESULTS COPIED FROM [7].

Method sessions
Avg. Diff.

0 1 2 3 4 5 6 7 8

Joint-CNN 80.15 74.57 69.93 65.31 61.00 57.79 54.47 51.59 49.66 62.72 0.00
NCM∗ [42] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 -36.12
iCaRL∗ [26] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.87 -35.93
EEIL∗ [43] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 33.79 -33.81
TOPIC[7] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 -20.29
SPPR[8] 63.97 65.86 61.31 57.60 53.39 50.93 48.27 45.36 43.32 54.45 -6.34
CEC[9] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53 -0.52
F2M[38] 71.45 68.10 64.43 60.80 57.76 55.26 53.53 51.57 49.35 59.14 -0.31
MetaFSCIL[11] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79 +0.31
C-FSCIL[10] 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47 61.64 +0.81
MCNet[39] 73.30 69.34 65.72 61.70 58.75 56.44 54.59 53.01 50.72 60.40 +1.06
FACT[13] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 62.24 +2.44
SoftNet[40] 79.88 75.54 71.64 67.47 64.45 61.09 59.07 57.29 55.33 65.75 +5.67
KT-RCNet(Ours) 83.40 78.75 74.94 70.81 67.84 64.89 63.10 60.92 58.53 69.24 +8.87

TABLE III
COMPARISON WITH OTHER METHODS ON CUB200, WHERE * REPRESENTS THE RESULTS COPIED FROM [7].

Method sessions
Avg. Diff.

0 1 2 3 4 5 6 7 8 9 10

Joint-CNN 78.68 73.49 69.86 66.10 64.74 62.47 60.64 59.32 57.25 57.67 57.50 64.34 0.00
NCM∗ [42] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 -37.63
iCaRL∗ [26] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 -36.34
EEIL∗ [43] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 36.27 -35.39
TOPIC[7] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 -31.22
SPPR[8] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.34 -20.17
CEC[9] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 -5.22
MetaFSCIL[11] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 61.93 -4.86
F2M[38] 77.13 73.92 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89 63.96 -1.61
SoftNet[40] 78.07 74.58 71.37 67.54 65.37 62.60 61.07 59.37 57.53 57.21 56.75 64.68 -0.75
FACT[13] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 64.42 -0.56
MCNet[39] 77.57 73.96 70.47 65.81 66.16 63.81 62.09 61.82 60.41 60.09 59.08 65.57 +1.58
KT-RCNet(Ours) 79.86 76.48 73.34 69.72 68.48 65.93 64.58 63.68 62.04 61.48 60.47 67.82 +2.97

we set the batch size to 64 and the learning rate and weight
decay to 0.1 and 0.0005, respectively. The learning rate is
decreased by a factor of 0.1 every 40 epochs.
• In the knowledge transfer learning stage, we train the

complementary model for 80 epochs. In each epoch, we
randomly sample 200 tasks, and we use the SGD optimizer
with a learning rate of 0.03, weight decay of 0.0001, and
momentum of 0.9. The learning rate is decreased by a factor
of 0.1 per 20 epochs. The scale factors are set to 16, 16, 12 for
CIFAR100, CUB200, and miniImageNet respectively. Random
resized crop, random horizontal flip, and color jitter techniques
are employed for data augmentation during training, following
Zhu et al. [8].

C. Evaluation Protocol

In the inference stage of each session, we use the test sets
of all encountered classes to evaluate the model’s performance
and report the Top-1 accuracy. To evaluate the model’s over-
all performance, we compute the average accuracy Avg.=

1
𝑀+1

∑𝑀
𝑖=0A𝑖 across all sessions, where 𝑀 represents the

number of incremental sessions and A𝑖 represents the Top-
1 accuracy of the 𝑖−th session. Following previous class
incremental learning methods [33], [48], we also compute the
performance gap Diff.= A𝑀 − A𝑢𝑏𝑀 between the method
and the upper-bound method Joint-CNN, where Joint-CNN
represents the method that uses both the training data of old
and new classes to train the model in each session, and A𝑢𝑏

𝑀

represents the accuracy of the last session of Joint-CNN.

D. Quantitative Comparison
To validate the effectiveness of our proposed method, we

compare it with some classical class-incremental learning
methods (iCaRL [26], EEIL [43], and NCM [42]) and recent
FSCIL methods (TOPIC [7], SPPR [8], CEC [9], F2M [38],
C-FSCIL [10], MetaFSCIL [11], FACT [13], SoftNet [40] and
MCNet [39]) on three popular benchmark datasets. As can be
observed from Table I, II, and III,
• On three benchmark datasets, due to scarce training

samples in the incremental sessions, class incremental



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

TABLE IV
ABLATION STUDIES ON minIMAGENET. RESA REFERS TO THE RANDOM EPISODE SAMPLING AND AUGMENTATION. COMPARED WITH SINGLE METRIC,

ENSEMBLING DIFFERENT METRICS ACHIEVES BETTER PERFORMANCE, AND OUR PROPOSED RESA CAN FURTHER BOOST THE PERFORMANCE.

B-model C-model RESA sessions

0 1 2 3 4 5 6 7 8
√

81.87 76.82 72.29 68.60 65.44 62.45 59.57 57.42 55.98√
80.83 74.32 70.20 66.68 63.79 60.92 58.34 56.61 55.18√ √
82.98 77.60 73.31 69.87 67.03 64.15 61.56 59.83 58.70

√ √
82.80 77.66 73.59 69.83 67.00 63.48 60.49 58.38 56.68√ √ √
84.62 79.94 75.70 72.21 69.38 66.26 63.48 61.39 60.02

learning methods iCaRL, EEIL and NCM overfit the
training data, resulting in significant performance degra-
dation as the learning process proceeds.

• On miniImageNet, our proposed method achieves the
highest accuracy on each session. Particularly, compared
with the second-best method SoftNet, the average ac-
curacy Avg. of our proposed KR-RCNet has an im-
provement of 5.26%, while the performance gap Diff.
with the Joint-CNN of our proposed KR-RCNet has an
improvement of 5.34%.

• On CIFAR100, our proposed KR-RCNet also achieves
the highest accuracy on each session. Particularly, com-
pared with the second-best method SoftNet, the average
accuracy Avg. of our proposed KR-RCNet has an im-
provement of 3.49%, while the performance gap Diff.
with the Joint-CNN of our proposed KR-RCNet has an
improvement of 3.2%.

• On CUB200, our proposed KR-RCNet achieves the best
performance on each session as on miniImageNet and
CIFAR100. Particularly, compared with the second-best
method MCNet, the average accuracy Avg. of our pro-
posed KR-RCNet has an improvement of 2.25%, while
the performance gap Diff. with the Joint-CNN of our
proposed KR-RCNet has an improvement of 1.39%.

In summary, compared to other methods shown in Table
I, II, and III, our proposed method not only achieves the
highest average accuracy Avg. but also achieves the largest
performance gap Diff. with the Joint-CNN. The quantitative
comparisons demonstrate the superior performance of our
proposed KT-RCNet.

E. Ablation Study

To validate the effectiveness of each component in RCNet,
we conduct several ablation studies on miniImageNet. As we
can see from Table V-C, the accuracy on the last session
given by only using the base model (B-model) is 55.98% (row
1) while that given by only using the complementary model
(C-model) is 55.18% (row 2). When using the C-model as
an auxiliary model to complement the B-model (row 3), the
accuracy on the last session is 58.70% which surpasses that
given by using the B-model or the C-model alone by a margin
of 2.72% and 3.52%, respectively. The results demonstrate
that relying on a single metric to perform incremental relation
prediction is insufficient, and ensembling different metrics is

an effective strategy for FSCIL. When using RESA to train
the C-model (row 4), we can see that our proposed RESA
boosts the C-Model (row 2) performance from 55.18% to
56.68%. When using RESA to train the C-model and using
C-model to complement the B-model (row 5), we can see
that our proposed RESA boosts the performance of the full
model (row 3) from 58.70% to 60.02%. The results validate
the effectiveness of our proposed RESA.

F. Discussion

1) The impact of sampling setting: In RESA, we adopt 𝑁-
way-𝐾-shot setting to sample the data of pseudo incremental
classes from the base session. To study the impact of the
𝑁-way-𝐾-shot setting on average accuracy in the knowl-
edge transfer learning stage, we change the number of ways
among {5, 10, 15, 20, 25} and the number of shots among
{1, 5, 10, 15, 20}. The results given by different combinations
are reported in Figure 3(a). No matter fixing the number of
ways or shots, our proposed method can achieve a satisfactory
result as long as suitable shots or ways are set. Particularly,
setting the number of ways to 5 and the number of shots
to 20 achieves the best performance on CUB200. The main
reason we guess may be that the data of constructed pseudo
tasks is sampled from the base session. Setting a small way
can reduce overfitting, and a large shot can provide sufficient
prior information.

2) The impact of L𝑔𝑙𝑜𝑏𝑎𝑙 and L𝑙𝑜𝑐𝑎𝑙 .: To verify the effec-
tiveness of L𝑔𝑙𝑜𝑏𝑎𝑙 and L𝑙𝑜𝑐𝑎𝑙 , we change 𝜆1 and 𝜆2 among
{0, 0.5, 1, 1.5, 2.0} and report the average accuracy and the
accuracy on new classes. As shown in Figure 3(b), L𝑔𝑙𝑜𝑏𝑎𝑙
and L𝑙𝑜𝑐𝑎𝑙 together are better than using L𝑔𝑙𝑜𝑏𝑎𝑙 or L𝑙𝑜𝑐𝑎𝑙
alone. What’s more, it’s clear from Figure 3(c) that the L𝑙𝑜𝑐𝑎𝑙
is beneficial to improve the model’s plasticity. Particularly,
setting 𝜆1 to 1.5 and 𝜆2 to 2.0 is an optimal configuration.

3) The sensitivity of the number of incremental shots.: To
explore the influence of the number of shots in inference stage,
we change the number of shots among {1, 5, 10, 20, 50, 100}.
As can be seen from Figure 4(a), increasing the number of
shots from 1 to 5, the performance on incremental sessions is
improved by a large margin. However, such improvement gets
small when we continually increase the number of shots. The
main reasons step from that increasing the number of shots
from 1 to 5 slightly drops the model’s performance on old
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TABLE V
FURTHER ANALYSIS ON RANDOM EPISODE SAMPLING AND AUGMENTATION (RESA), WHERE RESS [8], PIL[9], AND META-LEARNING[11] ARE THE
PREVIOUSLY PROPOSED KNOWLEDGE TRANSFER LEARNING STRATEGIES, C REFERS TO CUTMIX [49] , M REFERS TO MIXUP[50], AND R REFERS TO

ROTATE[9].

Strategy sessions

0 1 2 3 4 5 6 7 8 9 10

RESS[8] 78.21 73.81 70.78 67.22 66.16 63.82 62.54 61.29 59.68 58.92 58.10
PIL[9] 79.35 76.15 72.64 68.59 67.44 65.07 63.72 62.72 60.87 60.20 59.18
Meta-learning[11] 79.54 76.18 72.51 68.58 67.14 64.63 63.32 62.38 60.75 60.20 59.32
RESA-C (Ours) 79.01 75.47 72.15 68.31 67.21 64.96 63.89 63.06 61.33 60.83 59.85
RESA-M (Ours) 79.48 76.35 73.03 69.30 68.19 65.70 64.28 63.67 61.81 61.22 59.99
RESA-R (Ours) 79.86 76.48 73.34 69.72 68.48 65.93 64.58 63.68 62.04 61.48 60.47

5-w
ay

10-w
ay

15-w
ay

20-w
ay

25-w
ay

1-shot

5-shot

10-shot

15-shot

20-shot

Av
er

ag
e 

Ac
cu

ra
cy

(%
)

66.03 66.61 66.81 66.90 67.11

66.94 67.18 67.02 67.20 67.32

67.35 67.13 67.26 67.07 67.10

67.14 67.24 67.05 66.85 67.05

67.82 67.15 66.79 66.76 66.78

(a) Influence of task setting
λ1=0.0

λ1=0.5
λ1=1.0

λ1=1.5
λ1=2.0

λ2=0.0

λ2=0.5

λ2=1.0

λ2=1.5

λ2=2.0

66.08 65.49 66.16 66.23 66.18

66.01 66.49 66.69 66.91 67.16

66.90 67.02 67.22 67.34 67.63

66.96 67.19 67.35 67.62 67.37

66.79 67.36 67.14 67.82 67.54

(b) Influence on average accuracy
λ1=0.0

λ1=0.5
λ1=1.0

λ1=1.5
λ1=2.0

λ2=0.0

λ2=0.5

λ2=1.0

λ2=1.5

λ2=2.0

40.90 42.89 42.44 42.61 42.40

43.06 44.55 44.62 44.20 44.64

43.87 44.79 45.13 44.31 44.61

44.31 44.72 44.89 44.41 44.51

44.42 44.86 44.48 45.26 44.92

(c) Influence on new classes

65.0

65.5

66.0

66.5

67.0

67.5

68.0

65.0

65.5

66.0

66.5

67.0

67.5

68.0

42.0

42.5

43.0

43.5

44.0

44.5

45.0

Fig. 3. Performance analysis under different conditions on CUB200, where (a) we use different 𝑁 -way-𝐾-shot settings to sample the data of pseudo
incremental classes, we change 𝜆1 and 𝜆2 among different values and report the (b) average accuracy and (c) the accuracy on new classes.
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Fig. 4. Influence of incremental shots on (a) each session, and (b) base and
new classes, where values shown in the bracket of the legend is the average
accuracy across all sessions.

classes but improves the model’s performance on new classes
by a large margin as shown in Figure 4 (b), and increasing
the number of shots from 5 to a larger value seems to have a
slight influence on old and new classes.

4) Further analysis of RESA strategy: To further verify the
effectiveness of our RESA strategy, we compare RESA with
the previously proposed knowledge transfer learning strategies
RESS [8], PIL [9], and meta-learning [11]. As we can see
from Table V-E, compared to the performance given by RESS
(row1), PIL (row2), or meta-learning (row3), our proposed
RESA (row 6) achieves the highest accuracy on each session
on CUB200. The results demonstrate that optimizing the

model from the global perspective to coincide with the learning
objective of FSCIL and the local perspective to improve the
model’s plasticity is a more effective strategy than global task-
focused RESS, local task-focused PIL, and sequential local
task-focused meta-learning. Furthermore, we also try different
strategies to synthesize the data. We can see that using rotate
[9] (row 6) can help our proposed method achieve better
performance than the beneficial brought by using MixUp [50]
(row 4) or CutMix [49] (row 5). The results may show that
rotate [9] is a more effective strategy than MixUp [50] and
CutMix [49].

5) Visual explanation for knowledge transfer.: To further
give a visual explanation for our proposed method’s knowl-
edge transfer ability, we use GradCAM [51] to visualize
relevant results. As shown in Figure 5, as long as the region
of interest captured by the base model or the complementary
model can relate to the target, our proposed method can better
capture the target region (column 1-4). When processing new
coming classes, we can see a similar phenomenon (column
5-7). The results demonstrate that our proposed method can
transfer the ability learned from the base session to the
incremental sessions well. However, if the region of interest
captured by the base model and the complementary model do
not involve the target, our proposed method fails (column 8).

VI. CONCLUSION

In this paper, we solve the few-shot class-incremental learn-
ing from two aspects, the effective knowledge transfer from
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Fig. 5. Visualization with GradCAM on CUB200, where four old (column 1-4) and new classes (column 5-8) are selected, and images with different sizes are
resized to the same size for the convenience of display. Our proposed method can well transfer the knowledge learned from the base session to the incremental
sessions in most cases.

the base session to the incremental sessions, and the design
of robust metrics for incremental sessions. For the first aspect,
we propose a random episode sampling and selection strategy
that mimics the real incremental setting and constructs pseudo
incremental tasks from the global and local perspectives. For
the second aspect, we propose a simple yet effective method
that utilizes complementary model with a squared euclidean-
distance classifier as the auxiliary module, which couples
with the widely used cosine classifier to perform incremental
relation measuring. Extensive experiments on miniImageNet,
CIFAR100, and CUB200 demonstrate that the effectiveness
of our proposed method named KT-RCNet compared with
previous methods.
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